FISIKA

KINEMATIKA GERAK LURUS : PERSAMAAN DUA DIMENSI

Persamaan gerak dalam dua dimensi digambarkan menggunakan fungsi dalam vektor, misalnya vektor posisi digambarkan sebagai bagian dari koordinat X dan Y menjadi :

\vec{r} = xi + yj

Jika terdapat dua koordinat masing-masing \vec{r_{1}}= x_{1}i + y_{1}j dan \vec{r_{2}} = x_{2}i + y_{2}j
maka vektor perpindahannya adalah \Delta \vec{r} = (x_{2}-x_{1})i + (y_{2}-y_{1})j atau dapat pula dinyatakan sebagai \Delta \vec{r} = {\Delta x}i + {\Delta y}j

Perlu anda ingat bahwa perpindahan adalah perubahan posisi.

Vektor Kecepatan Rata-Rata
Kecepatan didefinisikan sebagai perubahan posisi setiap satuan waktu, sehingga secara vektor, fungsi kecepatan ini dituliskan sebagai v = \frac {\Delta r}{\Delta t}

maka fungsi kecepatan dapat dituliskan sebagai v = \frac {\Delta x}{\Delta t}i + \frac {\Delta y}{\Delta t}j

karena {\Delta r} = {\Delta x}i + {\Delta y}j

Fungsi di atas hanya digunakan untuk menentukan vektor kecepatan rata-rata

Adapun Fungsi kecepatan sesaat dinyatakan menurut fungsi v = \frac {\delta r}{\delta t} yang dapat pula dituliskan sebagai v = \frac {\delta x}{\delta t}i + \frac {\delta y}{\delta t}j

fungsi \frac {\delta}{\delta t} menyatakan laju perubahan atau diferensial/ turunan

Jenis getaran

Getaran bebas terjadi bila sistem mekanis dimulai dengan gaya awal, lalu dibiarkan bergetar secara bebas. Contoh getaran seperti ini adalah memukul garpu tala dan membiarkannya bergetar, atau bandul yang ditarik dari keadaan setimbang lalu dilepaskan.

Getaran paksa terjadi bila gaya bolak-balik atau gerakan diterapkan pada sistem mekanis. Contohnya adalah getaran gedung pada saat gempa bumi.
[sunting] Analisis getaran

Dasar analisis getaran dapat dipahami dengan mempelajari model sederhana massa-pegas-peredam kejut. Struktur rumit seperti badan mobil dapat dimodelkan sebagai “jumlahan” model massa-pegas-peredam kejut tersebut. Model ini adalah contoh osilator harmonik sederhana.
[sunting] Getaran bebas tanpa peredam
Model massa-pegas sederhanal

Pada model yang paling sederhana redaman dianggap dapat diabaikan, dan tidak ada gaya luar yang mempengaruhi massa (getaran bebas).

Dalam keadaan ini gaya yang berlaku pada pegas Fs sebanding dengan panjang peregangan x, sesuai dengan hukum Hooke, atau bila dirumuskan secara matematis:

F_s=- k x \!

dengan k adalah tetapan pegas.

Sesuai Hukum kedua Newton gaya yang ditimbulkan sebanding dengan percepatan massa:

\Sigma\ F = ma = m \ddot{x} = m \frac{d^2x}{dt^2} =

Karena F = Fs, kita mendapatkan persamaan diferensial biasa berikut:

m \ddot{x} + k x = 0.

Gerakan harmonik sederhana sistem benda-pegas

Bila kita menganggap bahwa kita memulai getaran sistem dengan meregangkan pegas sejauh A kemudian melepaskannya, solusi persamaan di atas yang memerikan gerakan massa adalah:

x(t) = A \cos (2 \pi f_n t) \!

Solusi ini menyatakan bahwa massa akan berosilasi dalam gerak harmonis sederhana yang memiliki amplitudo A dan frekuensi fn. Bilangan fn adalah salah satu besaran yang terpenting dalam analisis getaran, dan dinamakan frekuensi alami takredam. Untuk sistem massa-pegas sederhana, fn didefinisikan sebagai:

f_n = {1\over {2 \pi}} \sqrt{k \over m} \!

Catatan: frekuensi sudut ω (ω = 2πf) dengan satuan radian per detik kerap kali digunakan dalam persamaan karena menyederhanakan persamaan, namun besaran ini biasanya diubah ke dalam frekuensi “standar” (satuan Hz) ketika menyatakan frekuensi sistem.

Bila massa dan kekakuan (tetapan k) diketahui frekuensi getaran sistem akan dapat ditentukan menggunakan rumus di atas.
Getaran bebas dengan redaman
Mass Spring Damper Model

Bila peredaman diperhitungkan, berarti gaya peredam juga berlaku pada massa selain gaya yang disebabkan oleh peregangan pegas. Bila bergerak dalam fluida benda akan mendapatkan peredaman karena kekentalan fluida. Gaya akibat kekentalan ini sebanding dengan kecepatan benda. Konstanta akibat kekentalan (viskositas) c ini dinamakan koefisien peredam, dengan satuan N s/m (SI)

F_d = – c v = – c \dot{x} = – c \frac{dx}{dt} \!

Dengan menjumlahkan semua gaya yang berlaku pada benda kita mendapatkan persamaan

m \ddot{x} + { c } \dot{x} + {k } x = 0.

Solusi persamaan ini tergantung pada besarnya redaman. Bila redaman cukup kecil, sistem masih akan bergetar, namun pada akhirnya akan berhenti. Keadaan ini disebut kurang redam, dan merupakan kasus yang paling mendapatkan perhatian dalam analisis vibrasi. Bila peredaman diperbesar sehingga mencapai titik saat sistem tidak lagi berosilasi, kita mencapai titik redaman kritis. Bila peredaman ditambahkan melewati titik kritis ini sistem disebut dalam keadaan lewat redam.

Nilai koefisien redaman yang diperlukan untuk mencapai titik redaman kritis pada model massa-pegas-peredam adalah:

c_c= 2 \sqrt{k m}

Untuk mengkarakterisasi jumlah peredaman dalam sistem digunakan nisbah yang dinamakan nisbah redaman. Nisbah ini adalah perbandingan antara peredaman sebenarnya terhadap jumlah peredaman yang diperlukan untuk mencapai titik redaman kritis. Rumus untuk nisbah redaman (ζ) adalah

\zeta = { c \over 2 \sqrt{k m} }.

Sebagai contoh struktur logam akan memiliki nisbah redaman lebih kecil dari 0,05, sedangkan suspensi otomotif akan berada pada selang 0,2-0,3.

Solusi sistem kurang redam pada model massa-pegas-peredam adalah

x(t)=X e^{-\zeta \omega_n t} \cos({\sqrt{1-\zeta^2} \omega_n t – \phi}) , \ \ \omega_n= 2\pi f_n

Nilai X, amplitudo awal, dan φ, ingsutan fase, ditentukan oleh panjang regangan pegas.

Dari solusi tersebut perlu diperhatikan dua hal: faktor eksponensial dan fungsi cosinus. Faktor eksponensial menentukan seberapa cepat sistem teredam: semakin besar nisbah redaman, semakin cepat sistem teredam ke titik nol. Fungsi kosinus melambangkan osilasi sistem, namun frekuensi osilasi berbeda daripada kasus tidak teredam.

Frekuensi dalam hal ini disebut “frekuensi alamiah teredam”, fd, dan terhubung dengan frekuensi alamiah takredam lewat rumus berikut.

f_d= \sqrt{1-\zeta^2} f_n

Frekuensi alamiah teredam lebih kecil daripada frekuensi alamiah takredam, namun untuk banyak kasus praktis nisbah redaman relatif kecil, dan karenanya perbedaan tersebut dapat diabaikan. Karena itu deskripsi teredam dan takredam kerap kali tidak disebutkan ketika menyatakan frekuensi alamiah.

Gerak Melingkar

Gerak Melingkar Berubah Beraturan

Adalah gerak suatu benda dengan bentuk lintasan melingkar dan besar percepatan sudut/anguler (α) konstan.
Jika perecepatan anguler benda searah dengan perubahan kecepatan anguler maka perputaran benda semakin cepat, dan dikatakan GMBB dipercepat. Sebaliknya jika percepatan anguler berlawanan arah dengan perubahan kecepatan anguler benda akan semakin lambat, dan dikatakan GMBB diperlambat.

1. Percepatan Anguler (α)

Sebuah benda bergerak melingkar dengan laju anguler berubah beraturan memiliki perubahan kecepatan angulernya adalah :

Δω = ω2 – ω1

Dan perubahan waktu kecepatan anguler adalah Δt, maka di dapatkan :

∆ω = perubahan kecepatan sudut (rad/s)
∆t = selang waktu (s)
α = percepatan sudut/anguler (rads-2)

Sama halnya dengan Gerak Lurus Berubah Beraturan (GLBB), pada GMBB berlaku juga :
– Mencari kecepatan sudut akhir (ωt) :

ωt = ω0 ± α.t

– Mencari posisi sudut / besar sudut (θ) yang ditempuh:

θ= ω0 t ± α.t2

x = R. θ

Dapat diperoleh juga :

ωt2 = ω02 ± 2 α.θ

dimana :

ωt = kecepatan sudut/anguler keadaan akhir(rad/s)
ω0 = kecepatan sudut/anguler keadaan awal (rad/s)
θ = besar sudut yang ditempuh (radian, putaran)
1 rpm = 1 putaran permenit
1 putaran = 360° = 2p rad.
x = perpindahan linier (m)
t = waktu yang diperlukan (s)
R = jari-jari lintasan (m)

2. Percepatan Tangensial (at)

Pada gerak melingkar berubah beraturan selain percepatan sentripetal (as) juga mempunyai percepatan tangensial (at).

Percepatan Tangensial (at) diperoleh :

maka : at = . R dengan arah menyinggung lintasan.

Partikel P memiliki komponen Percepatan :

a = at + as , dimana at tegak lurus as ( as at )

Besar Percepatan Linier Total partikel titik P :

at = percepatan tangensial (ms-2)
as = percepatan sentripetal (ms-2)
a = percepatan total (ms-2)

Jika as = dan maka didapat :

Percepatan total (a) :

dimana

V = kelajuan linier (m/s)
R = jari-jari lintasan (m)
= percepatan sudut (rad s-2)

Semua benda bergerak melingkar selalu memiliki percepatan sentripetal, tetapi belum tentu memiliki percepatan tangensial.

Percepatan tangensial hanya dimiliki bila benda bergerak melingkar dan mengalami perubahan kelajuan linier.

Benda yang bergerak melingkar dengan kelajuan linier tetap hanya memiliki percepatan sentripetal, tetapi tidak mempunyai percepatan tangensial (at = 0 ).

Contoh soal Konsep Gerak Melingkar Berubah Beraturan:
Sebuah roda mobil sedang berputar dengan kecepatan sudut 8,6 rad/s. Suatu gesekan kecil pada poros putaran menyebabkan suatu perlambatan sudut tetap sehingga akhirnya berhenti dalam waktu 192 s. Tentukan :

1. Percepatan sudut
2. Jarak yang telah ditempuh roda dari mulai bergerak sampai berhenti (jari-jari roda 20 cm)

Pembahasan :

Diketahui : ω0= 8,6 rad/s

ωt = 0 rad/s

t = 192 s
R = 10cm= 0,1 m

Ditanya : a.
b. x

Jawab :

a.

= – 0,045 rads-2

b.

= (8,6).(192) + (-0,045).(192)2

= 826 rad
x = R.θ

= (0,1m),(826)

= 82,6 m

Ayunan Konis
Ayunan Konis (Ayunan Kerucut) adalah putaran sebuah benda yang diikat pada seutas tali yang panjangnya L ujung atas tali diikat pada satu titik tetap dan benda diputar mengitari permukaan membentuk kerucut.

Gaya yang bekerja adalah Tx sebagai gaya sentripetal yang menyebabkan benda bergerak melingkar beraturan pada bidang horizontal.
Tx = Fs

Pada Sumbu Y :
Benda tidak bergerak,maka sesuai hukum I Newton.
Fy = 0
Tcosθ – mg = 0
T cos θ = mg ……. (2)
Dari pers (1) dan (2) diperoleh :

dimana

V = kelajuan ayunan(m/s)
g = percepatan gravitasi (ms-2)
R = jari-jari (m)
θ = besar sudut putar(rad)

Contoh soal Ayunan Konis/kerucut:
Seutas tali dengan panjang 1 m, ujung atasnya dipegang dan ujung bawah dikaitkan ke benda bermassa 100 g.Kemudian tali diputar sehingga benda bergerak melingkar horisontal dengan jari-jari lingkaran 0,5 m. Hitunglah :
a. besar tegangan tali
b. kelajuan linier benda

Pembahasan :

Diketahui : L =1 m
R = 0,5 m
m = 100g = 0,1 kg

Ditanya :
a. T
b. V

Jawab :

(a) (b) (c)

Berdasarkan gambar (b) : tan θ = = 0,58 , cos θ =
a. Ty = mg .

T cos θ = (0,1).(10)
T = N

b.
= 1,70 m/s

Susunan-pegas

Pegas (=spring) pegas – courtesy of Globalspec.inc

Untuk pegas yang tersusun seri sebagaimana gambar di samping

Untuk pegas yang tersusun paralel layaknya gambar aplikasi berikut :

pegas paralel depan mobil atas ijin SAAB car production

Karena kedua pegas mendapatkan beban yang sama maka berlaku

y1=y2= \Delta {y} sementara F1+F2 sebab kedua pegas tersebut membagi dua beban yang diterimanya.

Menjadikan W (beban) = F1 + F2

sehingga \Delta y = \frac{W}{k_{paralel}}

{k} \Delta{y} = k_{1}y_{1} + k_{2}y_{2}

karena y_{1} = y_{2} = \Delta {y} maka

{k} \Delta{y} = k_{1} \Delta y + k_{2} \Delta {y}

Secara distributif, {k} \Delta{y} = ( k_{1} + k_{2} ) \Delta y

akhirnya {k} = k_{1} + k_{2}

Gerak Vertikal (1)
2009 September 10
tags: Fisika SMA, gerak jatuh bebas, gerak vertikal
by pak rudy

8 rumbai

Quantcast

Setelah membahas mengenai Gerak Lurus Beraturan (dengan indikasi benda yang bergerak dengan kecepatan tetap) serta Gerak Lurus Berubah Beraturan (indikasinya Gerak sebuah benda yang mengalami perubahan kecepatan secara beraturan). Kali ini kita membahas mengenai gerak vertikal atau gerak sepanjang sumbu-Y.

Gerak vertikal ini dibagi menjadi dua bagian, yaitu :

* Gerak jatuh bebas
* Gerak vertikal ke atas

Gerak Jatuh bebas merupakan gerak benda tanpa kecepatan awal sebab dijatuhkan dari ketinggian tertentu. Acuan gerak vertikal adalah permukaan bumi, berbeda dengan acuan gerak lurus yang berlaku sepanjang sumbu horisontal atau bidang datar.

Saat benda jatuh bebas, benda mendapat tarikan dari percepatan gravitasi bumi yang besarnya sekitar 9,8 m/s2 sehingga semakin lama gerak benda akan semakin cepat ditarik oleh bumi. Yang berarti dalam waktu 1 sekon setelah jatuh, benda akan memiliki kecepatan sebesar 9,8 m/s2 .
Jika benda dilempar ke atas atau melakukan gerak vertikal ke atas (GVA) … karena benda dilempar, tentunya akan memiliki kecepatan awal (V0) sehingga benda menjadi bergerak dari titik acuan menuju ketinggian tertentu. Namun pada saat di titik tertinggi, benda seolah-olah berhenti! Mengapa ? Karena benda ini mendapat perlambatan dari gravitasi bumi sebesar 9,8 m/s2 karena arah geraknya yang melawan “kehendak” gravitasi bumi.
Kehendak dari gravitasi bumi adalah menarik benda-benda di sekitar permukaan bumi menuju “pusat kekuatan” bumi.

sedemikian sederhana penjelasan mengenai Gerak Vertikal, semoga anda bisa membuat gambaran dasar tentang gerak tersebut dalam bentuk lintasan.

Gerak Vertikal (1)
2009 September 10
tags: Fisika SMA, gerak jatuh bebas, gerak vertikal
by pak rudy

8 rumbai

Quantcast

Setelah membahas mengenai Gerak Lurus Beraturan (dengan indikasi benda yang bergerak dengan kecepatan tetap) serta Gerak Lurus Berubah Beraturan (indikasinya Gerak sebuah benda yang mengalami perubahan kecepatan secara beraturan). Kali ini kita membahas mengenai gerak vertikal atau gerak sepanjang sumbu-Y.

Gerak vertikal ini dibagi menjadi dua bagian, yaitu :

* Gerak jatuh bebas
* Gerak vertikal ke atas

Gerak Jatuh bebas merupakan gerak benda tanpa kecepatan awal sebab dijatuhkan dari ketinggian tertentu. Acuan gerak vertikal adalah permukaan bumi, berbeda dengan acuan gerak lurus yang berlaku sepanjang sumbu horisontal atau bidang datar.

Saat benda jatuh bebas, benda mendapat tarikan dari percepatan gravitasi bumi yang besarnya sekitar 9,8 m/s2 sehingga semakin lama gerak benda akan semakin cepat ditarik oleh bumi. Yang berarti dalam waktu 1 sekon setelah jatuh, benda akan memiliki kecepatan sebesar 9,8 m/s2 .
Jika benda dilempar ke atas atau melakukan gerak vertikal ke atas (GVA) … karena benda dilempar, tentunya akan memiliki kecepatan awal (V0) sehingga benda menjadi bergerak dari titik acuan menuju ketinggian tertentu. Namun pada saat di titik tertinggi, benda seolah-olah berhenti! Mengapa ? Karena benda ini mendapat perlambatan dari gravitasi bumi sebesar 9,8 m/s2 karena arah geraknya yang melawan “kehendak” gravitasi bumi.
Kehendak dari gravitasi bumi adalah menarik benda-benda di sekitar permukaan bumi menuju “pusat kekuatan” bumi.

sedemikian sederhana penjelasan mengenai Gerak Vertikal, semoga anda bisa membuat gambaran dasar tentang gerak tersebut dalam bentuk lintasan.

Tumbukan

* Saturday Nov 15,2008 10:05 AM
* By san
* In Impuls dan Momentum

Pengantar

Dalam kehidupan sehari-hari, kita biasa menyaksikan benda-benda saling bertumbukan. Banyak kecelakaan yang terjadi di jalan raya sebagiannya disebabkan karena tabrakan (tumbukan) antara dua kendaraan, baik antara sepeda motor dengan sepeda motor, mobil dengan mobil maupun antara sepeda motor dengan mobil. Demikian juga dengan kereta api atau kendaraan lainnya. Hidup kita tidak terlepas dari adanya tumbukan. Ketika bola sepak ditendang David Beckham, pada saat itu juga terjadi tumbukan antara bola sepak dengan kaki Abang Beckham. Tampa tumbukan, permainan billiard tidak akan pernah ada. Demikian juga dengan permainan kelereng kesukaanmu ketika masih kecil. Masih banyak contoh lainnya yang dapat anda temui dalam kehidupan sehari-hari. Ayo dipikirkan…

Pada pembahasan mengenai momentum dan impuls, kita telah meninjau hubungan antara momentum benda dengan peristiwa tumbukan. Hukum Kekekalan Momentum yang telah diulas sebelumnya juga selalu ditinjau ketika dua benda saling bertumbukan. Pada kesempatan ini kita akan mempelajari peristiwa tumbukan secara lebih mendalam dan mencoba melihat hukum-hukum fisika apa saja yang berlaku ketika benda-benda saling bertumbukan.

JENIS-JENIS TUMBUKAN

Perlu anda ketahui bahwa biasanya dua benda yang bertumbukan bergerak mendekat satu dengan yang lain dan setelah bertumbukan keduanya bergerak saling menjauhi. Ketika benda bergerak, maka tentu saja benda memiliki kecepatan. Karena benda tersebut mempunyai kecepatan (dan massa), maka benda itu pasti memiliki momentum (p = mv) dan juga Energi Kinetik (EK = ½ mv2).

Nah, pada kesempatan ini kita akan mempelajari jenis-jenis tumbukan antara dua benda dan mencoba melihat hubungannya dengan Kekekalan Momentum dan Kekekalan Energi Kinetik. Napa yang ditinjau kekekalan momentum dan kekekalan energi kinetik-nya ? bukannya Cuma momentum dan energi kinetik ? yupz… maksudnya begini, ketika benda bergerak saling mendekati sebelum tumbukan, kedua benda itu memiliki Momentum dan Energi Kinetik. Yang menjadi persoalan, bagaimana dengan Momentum dan Energi Kinetik kedua benda tersebut setelah bertumbukan ? apakah momentum dan energi kinetik kedua benda ketika sebelum tumbukan = momentum dan energi kinetik benda setelah tumbukan ? agar dirimu semakin memahaminya, mari kita bahas jenis-jenis tumbukan satu persatu dan meninjau kekekalan momentum dan kekekalan energi kinetik pada kedua benda yang bertumbukan.

Secara umum terdapat beberapa jenis tumbukan, antara lain Tumbukan lenting sempurna, Tumbukan lenting sebagian dan Tumbukan tidak lenting sama sekali.

TUMBUKAN LENTING SEMPURNA

Tumbukan lenting sempurna tu maksudnya bagaimanakah ? Dua benda dikatakan melakukan Tumbukan lenting sempurna jika Momentum dan Energi Kinetik kedua benda sebelum tumbukan = momentum dan energi kinetik setelah tumbukan. Dengan kata lain, pada tumbukan lenting sempurna berlaku Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik.

Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik berlaku pada peristiwa tumbukan lenting sempurna karena total massa dan kecepatan kedua benda sama, baik sebelum maupun setelah tumbukan. Hukum Kekekalan Energi Kinetik berlaku pada Tumbukan lenting sempurna karena selama tumbukan tidak ada energi yang hilang. Untuk memahami konsep ini, coba jawab pertanyaan gurumuda berikut ini. Ketika dua bola billiard atau dua kelereng bertumbukan, apakah anda mendengar bunyi yang diakibatkan oleh tumbukan itu ? atau ketika mobil atau sepeda motor bertabrakan, apakah ada bunyi yang dihasilkan ? pasti ada bunyi dan juga panas yang muncul akibat benturan antara dua benda. Bunyi dan panas ini termasuk energi. Jadi ketika dua benda bertumbukan dan menghasilkan bunyi dan panas, maka ada energi yang hilang selama proses tumbukan tersebut. Sebagian Energi Kinetik berubah menjadi energi panas dan energi bunyi. Dengan kata lain, total energi kinetik sebelum tumbukan tidak sama dengan total energi kinetik setelah tumbukan.

Nah, benda-benda yang mengalami Tumbukan Lenting Sempurna tidak menghasilkan bunyi, panas atau bentuk energi lain ketika terjadi tumbukan. Tidak ada Energi Kinetik yang hilang selama proses tumbukan. Dengan demikian, kita bisa mengatakan bahwa pada peritiwa Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Energi Kinetik.

Apakah tumbukan lenting sempurna dapat kita temui dalam kehidupan sehari-hari ? Tidak…. Tumbukan lenting sempurna merupakan sesuatu yang sulit kita temukan dalam kehidupan sehari-hari. Paling tidak ada ada sedikit energi panas dan bunyi yang dihasilkan ketika terjadi tumbukan. Salah satu contoh tumbukan yang mendekati lenting sempurna adalah tumbukan antara dua bola elastis, seperti bola billiard. Untuk kasus tumbukan bola billiard, memang energi kinetik tidak kekal tapi energi total selalu kekal. Lalu apa contoh Tumbukan lenting sempurna ? contoh jenis tumbukan ini tidak bisa kita lihat dengan mata telanjang karena terjadi pada tingkat atom, yakni tumbukan antara atom-atom dan molekul-molekul. Istirahat dulu ah…

Sekarang mari kita tinjau persamaan Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik pada perisitiwa Tumbukan Lenting Sempurna. Untuk memudahkan pemahaman dirimu, perhatikan gambar di bawah.

Dua benda, benda 1 dan benda 2 bergerak saling mendekat. Benda 1 bergerak dengan kecepatan v1 dan benda 2 bergerak dengan kecepatan v2. Kedua benda itu bertumbukan dan terpantul dalam arah yang berlawanan. Perhatikan bahwa kecepatan merupakan besaran vektor sehingga dipengaruhi juga oleh arah. Sesuai dengan kesepakatan, arah ke kanan bertanda positif dan arah ke kiri bertanda negatif. Karena memiliki massa dan kecepatan, maka kedua benda memiliki momentum (p = mv) dan energi kinetik (EK = ½ mv2). Total Momentum dan Energi Kinetik kedua benda sama, baik sebelum tumbukan maupun setelah tumbukan.

Secara matematis, Hukum Kekekalan Momentum dirumuskan sebagai berikut :

Keterangan :

m1 = massa benda 1, m2 = massa benda 2

v1 = kecepatan benda sebelum tumbukan dan v2 = kecepatan benda 2 Sebelum tumbukan

v’1 = kecepatan benda Setelah tumbukan, v’2 = kecepatan benda 2 setelah tumbukan

Jika dinyatakan dalam momentum,

m1v1 = momentum benda 1 sebelum tumbukan, m1v’1 = momentum benda 1 setelah tumbukan

m2v2 = momentum benda 2 sebelum tumbukan, m2v’2 = momentum benda 2 setelah tumbukan

Pada Tumbukan Lenting Sempurna berlaku juga Hukum Kekekalan Energi Kinetik. Secara matematis dirumuskan sebagai berikut :

Kita telah menurunkan 2 persamaan untuk Tumbukan Lenting Sempurna, yakni persamaan Hukum Kekekalan Momentum dan Persamaan Hukum Kekekalan Energi Kinetik. Ada suatu hal yang menarik, bahwa apabila hanya diketahui massa dan kecepatan awal, maka kecepatan setelah tumbukan bisa kita tentukan menggunakan suatu persamaan lain. Persamaan ini diturunkan dari dua persamaan di atas. Persamaan apakah itu ? nah, mari kita turunkan persamaan tersebut… dipahami perlahan-lahan ya

Sekarang kita tulis kembali persamaan Hukum Kekekalan Momentum :

Kita tulis kembali persamaan Hukum Kekekalan Energi Kinetik :

Kita tulis kembali persamaan ini menjadi :

Ini merupakan salah satu persamaan penting dalam Tumbukan Lenting sempurna, selain persamaan Kekekalan Momentum dan persamaan Kekekalan Energi Kinetik. Persamaan 3 menyatakan bahwa pada Tumbukan Lenting Sempurna, laju kedua benda sebelum dan setelah tumbukan sama besar tetapi berlawanan arah, berapapun massa benda tersebut.

Koofisien elastisitas Tumbukan Lenting Sempurna

Wah, istilah baru lagi ne… apaan sie koofisien elastisitas ? sebelum gurumuda menjelaskan apa itu koofisien elastisitas, mari kita obok2 lagi rumus fisika. Kali ini giliran persamaan 3…

Kita tulis lagi persamaan 3 :

Perbandingan negatif antara selisih kecepatan benda setelah tumbukan dengan selisih kecepatan benda sebelum tumbukan disebut sebagai koofisien elatisitas alias faktor kepegasan (dalam buku Karangan Bapak Marthen Kanginan disebut koofisien restitusi). Untuk Tumbukan Lenting Sempurna, besar koofisien elastisitas = 1. ini menunjukkan bahwa total kecepatan benda setelah tumbukan = total kecepatan benda sebelum tumbukan. Lambang koofisien elastisitas adalah e. Secara umum, nilai koofisien elastisitas dinyatakan dengan persamaan :

e = koofisien elastisitas = koofisien restitusi, faktor kepegasan, angka kekenyalan, faktor keelastisitasan

TUMBUKAN LENTING SEBAGIAN

Pada pembahasan sebelumnya, kita telah belajar bahwa pada Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Momentum dan Hukum Kekekakalan Energi Kinetik. Nah, bagaimana dengan tumbukan lenting sebagian ?

Pada tumbukan lenting sebagian, Hukum Kekekalan Energi Kinetik tidak berlaku karena ada perubahan energi kinetik terjadi ketika pada saat tumbukan. Perubahan energi kinetik bisa berarti terjadi pengurangan Energi Kinetik atau penambahan energi kinetik. Pengurangan energi kinetik terjadi ketika sebagian energi kinetik awal diubah menjadi energi lain, seperti energi panas, energi bunyi dan energi potensial. Hal ini yang membuat total energi kinetik akhir lebih kecil dari total energi kinetik awal. Kebanyakan tumbukan yang kita temui dalam kehidupan sehari-hari termasuk dalam jenis ini, di mana total energi kinetik akhir lebih kecil dari total energi kinetik awal. Tumbukan antara kelereng, tabrakan antara dua kendaraan, bola yang dipantulkan ke lantai dan lenting ke udara, dll.

Sebaliknya, energi kinetik akhir total juga bisa bertambah setelah terjadi tumbukan. Hal ini terjadi ketika energi potensial (misalnya energi kimia atau nuklir) dilepaskan. Contoh untuk kasus ini adalah peristiwa ledakan.

Suatu tumbukan lenting sebagian biasanya memiliki koofisien elastisitas (e) berkisar antara 0 sampai 1. Secara matematis dapat ditulis sebagai berikut :

Bagaimana dengan Hukum Kekekalan Momentum ? Hukum Kekekalan Momentum tetap berlaku pada peristiwa tumbukan lenting sebagian, dengan anggapan bahwa tidak ada gaya luar yang bekerja pada benda-benda yang bertumbukan.

TUMBUKAN TIDAK LENTING SAMA SEKALI

Bagaimana dengan tumbukan tidak lenting sama sekali ? suatu tumbukan dikatakan Tumbukan Tidak Lenting sama sekali apabila dua benda yang bertumbukan bersatu alias saling menempel setelah tumbukan. Salah satu contoh populer dari tumbukan tidak lenting sama sekali adalah pendulum balistik. Pendulum balistik merupakan sebuah alat yang sering digunakan untuk mengukur laju proyektil, seperti peluru. Sebuah balok besar yang terbuat dari kayu atau bahan lainnya digantung seperti pendulum. Setelah itu, sebutir peluru ditembakkan pada balok tersebut dan biasanya peluru tertanam dalam balok. Sebagai akibat dari tumbukan tersebut, peluru dan balok bersama-sama terayun ke atas sampai ketinggian tertentu (ketinggian maksimum). Lihat gambar di bawah…

Apakah pada Tumbukan Tidak Lenting Sama sekali berlaku hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik ?

Perhatikan gambar di atas. Hukum kekekalan momentum hanya berlaku pada waktu yang sangat singkat ketika peluru dan balok bertumbukan, karena pada saat itu belum ada gaya luar yang bekerja. Secara matematis dirumuskan sebagai berikut :

m1v1 + m2v2 = m1v’1 + m2v’2

m1v1 + m2(0) = (m1 + m2) v’

m1v1 = (m1 + m2) v’—- persamaan 1

Apakah setelah balok mulai bergerak masih berlaku hukum Kekekalan Momentum ? Tidak…. Mengapa tidak ? ketika balok (dan peluru yang tertanam di dalamnya) mulai bergerak, akan ada gaya luar yang bekerja pada balok dan peluru, yakni gaya gravitasi. Gaya gravitasi cenderung menarik balok kembali ke posisi setimbang. Karena ada gaya luar total yang bekerja, maka hukum Kekekalan Momentum tidak berlaku setelah balok bergerak.

Lalu bagaimana kita menganalisis gerakan balok dan peluru setelah tumbukan ?

Nah, masih ingatkah dirimu pada Hukum Kekekalan Energi Mekanik ? kita dapat menganalisis gerakan balok dan peluru setelah tumbukan menggunakan hukum Kekekalan Energi Mekanik. Ketika balok mulai bergerak setelah tumbukan, sedikit demi sedikit energi kinetik berubah menjadi energi potensial gravitasi. Ketika balok dan peluru mencapai ketinggian maksimum (h), seluruh Energi Kinetik berubah menjadi Energi Potensial gravitasi. Dengan kata lain, pada ketinggian maksimum (h), Energi Potensial gravitasi bernilai maksimum, sedangkan EK = 0.

Kita turunkan persamaannya ya😉

Catatan :

Ketika balok dan peluru tepat mulai bergerak dengan kecepatan v’, h1 = 0. Pada saat balok dan peluru berada pada ketinggian maksimum, h2 = h dan v2 = 0.

Persamaan Hukum Kekekalan Energi Mekanik untuk kasus tumbukan tidak lenting sama sekali.

EM1 = EM2

EP1 + EK1 = EP2 + EK2

0 + EK1 = EP2 + 0

½ (m1 + m2)v’2 = (m1 + m2) g h — persamaan 2

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: